Le forum français du MBTI MBTI, Jung, Myers Briggs, psychologie, sciences humaines, tests, individuation |
|
| Δ(x) ≡ ∀z[z=sub(x, x) ⇒ ¬DemT(z)] | |
| |
Auteur | Message |
---|
StuffedBeer Mauricette, aile anale de l'ère post-Humaine épurée
Type : ENTP 8w9 Age : 30 Lieu : Dans une plaine de frustration à cause de l'impossibilité de changer son profil quand on a plus de 99 ans. Emploi : Âne Prêtre. Inscription : 01/05/2015 Messages : 675
| (#) Sujet: Re: Δ(x) ≡ ∀z[z=sub(x, x) ⇒ ¬DemT(z)] Mar 19 Mai 2015, 23:18 | |
| Moi je serais content qu'on veuille tester mon cerveau. C'est un joli outils le cerveau, et c'est suffisamment visqueux pour que ça soit fun de le balancer sur tout le monde. |
| | | @ Green Aucun rang assigné
Type : INFP 9 FP-NF Age : 28 Lieu : Terre Emploi : Être humain Inscription : 19/03/2014 Messages : 783
| (#) Sujet: Re: Δ(x) ≡ ∀z[z=sub(x, x) ⇒ ¬DemT(z)] Mar 19 Mai 2015, 23:27 | |
| Tu as raison, je vais même me coucher.
Mais le pire c'est que j'ai oublié. Quand je faisais des maths j'étais obligé d'apprendre par coeur a reproduire les calculs à la manière SJ car j'allais toujours chercher des solutions bizarres.
Par exemple là il faut poser X=x^2. Mais pour le 7x ça donnera juste 7 ? Mon cerveau bug et n'arrive pas a faire correspondre ce X avec 7x. Parce que x3 qui devient X2 et x2 qui devient X ok mais ce x il devient quoi, rien ? Comment ça rien ? Je vois pas comment il peut disparaitre comme ça. Et après quand on va remettre a la normal, par quel sortilège on le fera revenir ce x ? Car pour les X2 et X on a juste a multiplier par x2 ok mais si t'as qu'un 7 comment ça se fait ?
J'ai quand même eu 12 au bac (S, et j'avais pris spé maths !) et c'était un peu plus dur que les autres années si on s'en référe aux annales. |
| | | Lyeeth Aucun rang assigné
Type : ENTP-A Age : 29 Lieu : Alsace Emploi : NT à plein temps Inscription : 19/05/2015 Messages : 26
| (#) Sujet: Re: Δ(x) ≡ ∀z[z=sub(x, x) ⇒ ¬DemT(z)] Mar 19 Mai 2015, 23:30 | |
| Non mais laisse tomber tu peux pas résoudre du 3ème degré par substitution, ça ne marche qu'avec du degré 4 et avec un coefficient de degré impaire (3 et 1) nul (genre ax^2 + bx^4=c). Tu n'as jamais appris ça en terminal même en spé maths (sauf si tu as fait un lycée bien badass qui envoie la moitié de sa promo en MPSI et encore..)
Bonne nuiit ! |
| | | Chase El Pacificator ChasingStarlight, le Besancenot de l'Ego
Type : INFP Age : 31 Lieu : Higher Emploi : J'bicrave des rimes Inscription : 10/01/2012 Messages : 3253
| (#) Sujet: Re: Δ(x) ≡ ∀z[z=sub(x, x) ⇒ ¬DemT(z)] Mar 19 Mai 2015, 23:36 | |
| Salut, Moi c'est Chase. Chasing Starlight tu vois, de mon petit nom. J'aime bien casser de l'ENTP aussi, vos petites failles émotionnelles sont un régal See you soon ! |
| | | Invité Invité
| (#) Sujet: Re: Δ(x) ≡ ∀z[z=sub(x, x) ⇒ ¬DemT(z)] Mar 19 Mai 2015, 23:47 | |
| Bon, j'ai zappé toutes les formules mathématiques des messages ci-dessus, parce que je suis une INTP version maths-refoulés mais welcome, Lyeeth. Et puis, j'ai toujours eu une sympathie particulière pour les trolls. Sinon c'était juste pour dire qu'il serait temps qu'on crée un fan club du baroque en mineur. Enfin, j'hésitais entre un fan club du baroque mineur et un fan club d'Hildegarde de Bingen, mais si une majorité apparaît envers le baroque, je peux faire un effort. Et rien de plus, quoi.
|
| | | Lyeeth Aucun rang assigné
Type : ENTP-A Age : 29 Lieu : Alsace Emploi : NT à plein temps Inscription : 19/05/2015 Messages : 26
| (#) Sujet: Re: Δ(x) ≡ ∀z[z=sub(x, x) ⇒ ¬DemT(z)] Mar 19 Mai 2015, 23:56 | |
| un ISTP traqueur d'ENTP ? J'en veux un ! ça doit être collector As you want ! Yop INTP, oui, baroque, ça me convient parfaitement Mais, tout le monde est convaincu que je troll, mais si quelqu'un veut Skype, il m'appelle, je lui répond en live à ses questions en baroque, maths, philo, physique (quantique, nucléaire) avec la cam sans toucher le clavier ID: Lyeeth |
| | | dorloth Aucun rang assigné
Type : INTJ Age : 33 Lieu : . Emploi : . Inscription : 12/06/2014 Messages : 1878
| (#) Sujet: Re: Δ(x) ≡ ∀z[z=sub(x, x) ⇒ ¬DemT(z)] Mer 20 Mai 2015, 00:39 | |
| Dommage, j'avais une question en escrime mais tu ne proposes pas |
| | | Lyeeth Aucun rang assigné
Type : ENTP-A Age : 29 Lieu : Alsace Emploi : NT à plein temps Inscription : 19/05/2015 Messages : 26
| (#) Sujet: Re: Δ(x) ≡ ∀z[z=sub(x, x) ⇒ ¬DemT(z)] Mer 20 Mai 2015, 07:02 | |
| Lauterwasser, tu composes quoi exactement ? Tu aurais un morceau "coup de coeur" à me proposer ? Pour ceux que ça intéresse( sisi j'y crois), la formule présente sur le nom du sujet est celle d'un des théorème d'incomplétude, une notion révolutionaire (mathématiquement et philosophiquement), le fait qu'on ne puisse jamais démontrer la véracité ou l'erreur de chaque domaine mathématique, de par l'emploi d'axiomes. Et comme tout est mathématique... C'est important pour ajouter un peu de crédibilité, entrez le nom de ma soeur (Manju Lebrillant) sur google, vous la verrez bel et bien championne nationale d'escrime, j'ai piraté les journaux locaux
Dernière édition par Lyeeth le Mer 20 Mai 2015, 13:01, édité 1 fois |
| | | Exterkate Hôte 5 étoiles
Type : INTP 6 Age : 29 Lieu : Paris Emploi : Sound Designer Inscription : 18/12/2011 Messages : 840
| (#) Sujet: Re: Δ(x) ≡ ∀z[z=sub(x, x) ⇒ ¬DemT(z)] Mer 20 Mai 2015, 09:33 | |
| Salut, et bienvenue. |
| | | Guinea Pig Disciple de Caligula
Type : x Age : 44 Lieu : Belgique Emploi : - Inscription : 08/06/2014 Messages : 1360
| (#) Sujet: Re: Δ(x) ≡ ∀z[z=sub(x, x) ⇒ ¬DemT(z)] Mer 20 Mai 2015, 10:20 | |
| Bienvenue. C'est toi sur ton avatar ? |
| | | E.T Aucun rang assigné
Type : ISxP Age : 49 Lieu : France Emploi : Etudiante Inscription : 18/05/2015 Messages : 49
| (#) Sujet: Re: Δ(x) ≡ ∀z[z=sub(x, x) ⇒ ¬DemT(z)] Mer 20 Mai 2015, 10:57 | |
| Bravo pour ta soeur ! On dirait que c'était écrit dans votre destin: leBRILLANT Moi je suis peut être un ISTP ou ISFP. J'ai une double personnalité |
| | | E.T Aucun rang assigné
Type : ISxP Age : 49 Lieu : France Emploi : Etudiante Inscription : 18/05/2015 Messages : 49
| (#) Sujet: Re: Δ(x) ≡ ∀z[z=sub(x, x) ⇒ ¬DemT(z)] Mer 20 Mai 2015, 11:18 | |
| Je ne suis pas une rationnelle et je m'en sortais en maths et surtout en physique chimie Ps: je n'apprenais pas par coeur C'est pour cela je dis que le MBTI est bizarre, je crois qu'en forme d'intelligence multiple |
| | | Lyeeth Aucun rang assigné
Type : ENTP-A Age : 29 Lieu : Alsace Emploi : NT à plein temps Inscription : 19/05/2015 Messages : 26
| (#) Sujet: Re: Δ(x) ≡ ∀z[z=sub(x, x) ⇒ ¬DemT(z)] Mer 20 Mai 2015, 13:50 | |
| Plop Exterkate, ty ! Bonjour Olrik ! Oui, c'est bien môa. Haha merci E.T Après dire que les mathématiques au lycée font appel à des capacités rationnelles, c'est pas dit, juger le profil psychologique sur les compétences attendues pour le bac ça a ses limites.
Dernière édition par Lyeeth le Mer 20 Mai 2015, 14:44, édité 1 fois |
| | | Invité Invité
| (#) Sujet: Re: Δ(x) ≡ ∀z[z=sub(x, x) ⇒ ¬DemT(z)] Mer 20 Mai 2015, 14:41 | |
| |
| | | Lyeeth Aucun rang assigné
Type : ENTP-A Age : 29 Lieu : Alsace Emploi : NT à plein temps Inscription : 19/05/2015 Messages : 26
| (#) Sujet: Re: Δ(x) ≡ ∀z[z=sub(x, x) ⇒ ¬DemT(z)] Mer 20 Mai 2015, 16:46 | |
| |
| | | sanka94 Intervenant polémique
Type : INTP /trholl /tro-intélijent Age : 42 Lieu : Champigny Emploi : Rien, c'est aux femmes de bosser. Inscription : 05/05/2015 Messages : 267
| (#) Sujet: Re: Δ(x) ≡ ∀z[z=sub(x, x) ⇒ ¬DemT(z)] Jeu 21 Mai 2015, 12:06 | |
| Tiens, un génie de plus, comme c'est bizarre. ( Bizarre, vous avez dit bizarre ? ) Questions existentielles simples. Avez-vous une petite amie ? ( ou petit, je ne juge pas ) Vous battiez-vous avec votre soeur en étant plus jeune ? ( Vers 13 ans ? ) Ha oui, ma question cheloue préférée. Si quelqu'un venait vous taper, comment réagiriez vous ? ( vous avez 10 secondes pour répondre, faut pas réfléchir ) Et la derniere, Vous savez comment est mort Archi-med ? ( oui, je fais des blagues aussi ! ) Le conseil de rester soi-meme, c'est nul. Un super conseil, surtout pour draguer, taisez vous amener la fille dans un lieu agréable, et passer un moment, main dans la main avec elle. Quand une fille veut sortir avec vous, vous pouvez lui proposer un Bowling, un mini golf, ou meme une video sur l espace de nassim, bizarrement, elle dira oui, car elle aime passer un moment avec vous, tout simplement. Petit challenge pour vous. Jung a inspiré le mbti j'ai lu quelque part qu il pouvait y avoir 64 combinaisons differentes possibles. Bizarre, puisque j'ai lu un ouvrage, "au bord de l eau" "Un général doit connaitre les 64 comportements pour gérer au mieux son armée " Tiens, une démonstration occidentale approuverait un vieux savoir empirique chinois ? PS : Pour les autres, c'est bizarre, quand un INTP s'ouvre, il devient interessant.... Peut on reprocher aux jeunes d'etre ignorant ? PS2 : Meme un vieux singe peut tomber de l'arbre. et PS3, parce que j'aime bien Sony, vous etes allé chercher une formule, probablement dans le courrier d'un proche, pour la balancer sur le fofo en vous la pétant ? Tsss, Brillant. PS4, AMEN |
| | | Lyeeth Aucun rang assigné
Type : ENTP-A Age : 29 Lieu : Alsace Emploi : NT à plein temps Inscription : 19/05/2015 Messages : 26
| (#) Sujet: Re: Δ(x) ≡ ∀z[z=sub(x, x) ⇒ ¬DemT(z)] Jeu 21 Mai 2015, 21:28 | |
| Bonjour l'ami: J'aime ton post. Par extention je t'aime. "Réputation: -45" -> Much D4rknEss J'ai une petite amie ENFJ, brillante même si quelques disparités morales et éthiques se font sentir. J'ai du cesser de me disputer un peu plus tôt, peut-être vers 10 ans. Si l'on me frappe ? Je lui casse le poignet, je lui fait mordre le rebord du trottoir et le lui donne un coup de pied sec dans les cervicales. Sinon, sur le coup j'essaye immédiatement d'analyser toutes les possibilités, que faire, pourquoi, comment réagir, en bref: je suis hébété, mais sans aucune agressivité. J'ose imaginer que c'est la réponse que tu espérais ? (si tu préfères que je te vouvoye préviens moi) Oui. Ce n'est pas un conseil N que de rester soi-même. (oui, je fais dans la discrimination typologique, ça va se finir au Zyklon B toussa ) Je ne connais que la mort historique d'Archimed, éclaire-moi, libère-moi de l'oscurantisme ! Je n'ai pas les mêmes techniques de dragues, personnellement c'est le contraire, j'arrive très facilement à transparaître un intellect intéressant par le débat et je suis plutôt sapiosexuel. C'est intéressant, drôle de coïncidence (une démonstration ? Il s'agit autant d'un savoir empirique pour le MBTI, rien à voir avec la recherche en science cognitive actuelle !) On la retrouve en totalité sur Wikipédia, théorème d'incomplétude. Merci. L'espace de Nassim ? Ah je ne connaissais pas, merci ! |
| | | Invité Invité
| (#) Sujet: Re: Δ(x) ≡ ∀z[z=sub(x, x) ⇒ ¬DemT(z)] Jeu 21 Mai 2015, 22:14 | |
| Sanka man, merde quoi... il débarque à peine, il clashe une formule imprononçable et tu le vouvoies fissa? J'ai mis 3 putains de jours à accéder à cet upgrade relationnel ultime, moi. Je suis vexée Lyeeth, l'ami Sanka a fait forte impression lorsqu'il a débarqué ici, c'est effectivement un peu le représentant officiel de l'autre côté de la force Et sinon, ton dernier accès de de Ne, c'était comment? Stuffedbeer, il s'invite à des anniversaires avec des chèvres. Moi je suis bien trop Ti pour ça, je l'aide à déterminer où nous avons le plus de probabilités de trouver des anniversaires avec des chèvres. Toi tu fais dans...? |
| | | Lyeeth Aucun rang assigné
Type : ENTP-A Age : 29 Lieu : Alsace Emploi : NT à plein temps Inscription : 19/05/2015 Messages : 26
| (#) Sujet: Re: Δ(x) ≡ ∀z[z=sub(x, x) ⇒ ¬DemT(z)] Ven 22 Mai 2015, 00:43 | |
| |
| | | sanka94 Intervenant polémique
Type : INTP /trholl /tro-intélijent Age : 42 Lieu : Champigny Emploi : Rien, c'est aux femmes de bosser. Inscription : 05/05/2015 Messages : 267
| (#) Sujet: Re: Δ(x) ≡ ∀z[z=sub(x, x) ⇒ ¬DemT(z)] Ven 22 Mai 2015, 17:50 | |
| Merci pour les réponses, Ne vous inquiétez pas, la vie apportera son lot de problèmes, Pour la question de l'aggression, il n'y a pas de bonnes réponses, on est dans l’imprévu total. @Mallollo, l'envie, c'est un peché. Je crois, de mémoire, qu'Archie bossait à Syracuse quand les grosmains se sont pointés, Et, malgré l'ordre du chef, le savoir grec n'a pu detourner la lame Ainsi, tout cerveau que nous sommes, ( j'inclus les lecteurs, aussi ) Nous sommes fragiles. J'ai perdu quelques amis de votre age par des accidents de voiture. Alors, conseil d'anciens, prenez, tout le temps, toujours, soin de vous. ( et par extension, soin des votres. ) Dicton marin, une main pour soi, une main pour le bateau. Je vous souhaite bonne chance, n'oubliez pas, Il y a eu des génies avant vous, il y en aura apres vous ;-) " Et puis, un jour, j'ai vu un triangle rectangle, avec 3 angles droits." |
| | | Invité Invité
| (#) Sujet: Re: Δ(x) ≡ ∀z[z=sub(x, x) ⇒ ¬DemT(z)] Ven 22 Mai 2015, 19:13 | |
| Quoi de plus normale sur une terre ronde. C est juste qu elle est grande |
| | | Contenu sponsorisé
| (#) Sujet: Re: Δ(x) ≡ ∀z[z=sub(x, x) ⇒ ¬DemT(z)] | |
| |
| | | | Δ(x) ≡ ∀z[z=sub(x, x) ⇒ ¬DemT(z)] | |
|
| Permission de ce forum: | Vous ne pouvez pas répondre aux sujets dans ce forum
| |
| |
| |
|